John Woods

Yale University

Microscopic Origins of Physical Property Variations in WTe2 Thin Films and Flakes

Transition metal dichalcogenides (TMDCs) have received increased attention due to their exotic electronic properties, especially in the few- or mono-layer limit. Fabricating nano-devices based on monolayer TMDCs necessitates that the desired electronic phases are preserved as the layer number decreases. The extremely large non-saturating magnetoresistance of WTe₂ and quantum spin Hall state in the mono-layer limit make WTe₂ an attractive system for both technological applications and fundamental science.

Direct synthesis of WTe₂ thin films is desirable for potential electronic and thermal propertyrelated applications, because it can be more easily scaled up to incorporate in wafer-scale production. We demonstrate a large-area, facile synthesis of WTe₂ thin films by reacting sputtered metal films with H₂Te, an intermediate vapor phase formed from Te vapor and H₂ carrier gas. We also report on the layer-dependent transport measurements of WTe₂ exfoliated to show that the transport properties of thin flakes are degraded by surface oxidation. We find that a roughly 2nm oxide layer forms at the WTe₂ surface. The amorphous oxide layer degrades the overall mobility due to scattering from the increased disorder that is observed with decreasing flake thickness when fitting the transport behavior to a two-band electrical conduction model. Our observation of the extrinsic effects on the electrical properties of WTe₂ underscores the need to understand and mitigate detrimental surface conditions in order to preserve the interesting electronic phases in the few- and mono-layer limit for TMDCs and other 2D layered materials.